乘法分配律教案模板5篇

时间:
Lonesome
分享
下载本文

优秀的教案能够通过跨学科的方式,拓宽学生的知识视野,增强综合能力,一份教案的设计旨在增强课堂活动的针对性与有效性,下面是久久美篇网小编为您分享的乘法分配律教案模板5篇,感谢您的参阅。

乘法分配律教案模板5篇

乘法分配律教案篇1

教学内容:教科书第54页得例题和第55页的“想想做做”。

教学目标:

1、使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。

2、使学生在观察、比较、猜测、分析和概括的过程中,培养简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨和简洁。

3、使学生在数学活动过程中获得成功的体验,进一步增强数学学习的兴趣和自信心。

教学重点、难点:发现并理解乘法分配律

教学过程:

一、 铺垫孕伏

1口算

125×53×8 25×44

指名说出运用什么方法使计算简便

2出示两组算式

(6+4)×7 6×7+4×7

20×(5+2) 20×5+20×2

(10+25)×4 10×4+25×4

先口算,再说说每一组算式有什么关系?(结果相同)

所以我们可以用什么符号连接这两个算式?(等号)

谈话导入:

上学期我们学习了乘法的交换律和结合律。今天我们要学习乘法的另一个定律。

二、 探究新知

1、谈话:同学们,学校马上要进行广播操比赛了,体育老师准备给比赛的同学每人买一套服装,我们一看。

出示课件:(课本第54页例题情景图)

2、 提问:从图上你获得了哪些信息?

(每件短袖32元 每条裤子45元 每件夹克衫65元)

3、 提问:

体育老师买5件夹克衫和5条裤子,一共要付多少元?你能自己列综合等式解决这个问题吗?

4、 学生试做

5、教师巡视,让用(65+45)×5和65×5+45×5两种不同方法解答的学生分别口答。

教师板书:(65+45)×5=110×5=550(元)

65×5+45×5=325+225=550(元)

6、指名学生说说自己列的算式和思路

解法一:先算买一套衣服用多少元

解法二:先算买夹克衫和买裤子各用多少元

7提问:

这道题的两种算法不同,比较一下他们的结果。你发现了什么?(结果相同)

8谈话:结果相同的两个算式,可以用等号相连接

板书:(65+45)×5=65×5+45×5

9照上面的等式,你还能再说出一个吗?

课件出示(—+-)×-=-×-+-×-

10谈话:这样的等式有很多,今天我们一起来研究这样等式的规律。

三、 概括定律

1提问:

观察例题这两个算式,等号左边先算什么,再算什么?右边呢?

学生回答后(65+45)×5是用65与45的和同5相乘;65×5+45×5是把65和45分别同5相乘。

2提问:谁能用一句话把等号左边算式的特点概括出来?右边呢?

板书:两个数的和同另一个数相乘

两个数分别同一个数相乘,再把两个积相加

3提问:

既然等式两边计算结果相同,我们可以得到什么?

:两个数的'和同另一个数相乘等于这两个数分别与另一个数相乘再相加

4同桌把乘法分配律完整地说一遍

5谈话:大家说得很好,你们发现的这个规律就是乘法分配律。(板书课题)

6练习

(1)、(42+35)×2=————

(2)、27×12+43×12=————

7、提问:如果现在要用字母来表示这个规律,你们认为应该用几个字母呢?(3个)

8、谁会用字母a、b、c表示乘法分配律

板书:(a+b)×c=a×c+b×c

四、 巩固练习

1根据乘法分配律,填出另一道算式

15×26+15×14=□○(□○□)

72×(30+6)=□○□○□○□

2课本第55页“想想做做”第2题

(1)学生用手势判断

(2)谈话:第三题意见不统一,你是怎么判断的,不能确定时可以用什么方法?(计算)

提问:

怎么改算式,让同学们一看就知道他们相等?

(74可以写成74×1)

(3)提问:

第4题的两个算式为什么不相等?怎样改写可以使它们相等?

3选择题

24×(49+51)与下面的————式相等

(1)24×51+24×49

(2)(24+49)×(24+51)

(3)24×49×51

4拓展题:

把例题中的问题改成5件夹克衫比5条裤子多多少元,可以怎么做?学生试做后发现:两个数的差与一个数相乘,也可以用这两个数分别与这个数相乘,再把它们的积相减,这也是乘法分配律。

乘法分配律教案篇2

教学目标:

1、发现、理解和掌握乘法分配律;

2、能用准确的语言表述乘法的分配律,并能初步运用乘法的分配律;

3、培养学生观察、归纳、概括等初步的逻辑思维能力。

4、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探究、自己得出结论的学习意识。

教学重点:

乘法分配律的意义及其应用。

教学难点:

应用乘法分配律进行简便计算。

教学过程:

一、创设情境,激发兴趣:

(请两位同学到前面)假如20年后,二位在机场见到了我,你们会怎么样?

生:(齐)高兴激动。

生1::打个招呼,宋老师好。

生2:宋老师好!

师:我把这个过程在黑板上用简笔画画出来,提问是有两个宋老师吗?

生:不是,是分别握手。

生:乘法分配律(小声地)

(设计意图:创设情境,吸引学生注意力,为学习新课埋下伏笔,激发学生的求知欲望。)

二、自主探索,合作交流

师:今天能和大家一起学习,老师非常高兴。现在正是阳春三月,植树造林、绿化环境的好季节。

1、引入图(:植树情景及信息):每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动?

(1)阅读理解:让学生充分表达自己知道了什么。

生1:已知每小组要4人挖坑种树、2人抬水浇树;有25个小组。求一共有多少同学参加这次植树活动。

生2:每个小组共有6人。

(2)分析解答:

学生汇报自己的解法,引导学生说明不同算法的理由。

板书:(4+2)×25 4×25+2×25

2.两个算式的结果怎样?用什么符号连接?生读等式

板书:(4+2)×25=4×25+2×25

生读算式(4+2)×25=4×25+2×25

3、春季运动会李老师欲订购9套运动服,上衣每件58元,裤子每件42元,一共需要都少钱?

口头列式,得出(58+42)×9=9×58+9×42(生读等式)

4、观察这两组算式,请你写出一些类似的式子.

每个学生都能正确写出几组算式,有很多学生已经用字母或图形表示的。(3个学生写错,2名学生自己改过来了)

投影展示

生1:(1+2)×3=1×3+2×3

(3+2)×4=4×3+2×4

(10+2)×5=10×5+2×5

(6+4)×5=6×5+4×5

生2:(4×2)×3=4×3+2×3

生3:他的算式是错的,括号里应该是两数之和。

生4:( + )× = × + ×

(a+b)×c= a×c+ b×c

a×(b+c) = a×b+ a×c

师;尝试用文字总结发现的规律

生:两个数相加,乘第三个数,可以先把第三个数分别与前两个数相乘,再相加。

等号两边的算式有什么相同和不同?

5、集体归纳。

抓住:两个数和、分别相乘

小结:这个规律是具有普遍性的。你们发现的这个规律就是我们的数学前辈们早已研究得出的“乘法分配律”。(板书课题:乘法分配律)也就是---(电脑出示下面的文字)

两个数的和与一个数相乘,可以把这两个数分别和这个数相乘,再把两个积相加,结果不变。

6、讨论记忆乘法分配律的方法。

师:乘法分配律与乘法交换律、结合律不同,大家讨论一下记忆乘法分配律的方法。

生1:就像课前老师与两位同学见面一样,老师和两位同学分别握手再求和。

生2:括号外面的字母c就像我自己,放学回来,站在门外,爸爸和妈妈在房子里,我进门后先和爸爸打招呼,再和妈妈打招呼,最后一家人围坐在一起。

学生的方法很多。

(设计意图:通过自己模仿写算式和寻找记忆方法的环节,让学生体会理解分配律的本质特点,激发学习兴趣)

三、巩固新知,尝试练习

1、数学王国正在举行有奖竞猜的活动,你能拿到那些精美的奖品吗?

(12+200)×3=□×3+□×3

15×(40+2)=□×40+□×2

2、数学游戏:找朋友

(1)找出得数相等的两个算式,(将算式卡片展示在黑板上)

(设计意图:一共出示了四组算式,让学生在辨别正误的同时,进一步巩固所学知识,提高学习兴趣)

提问: 22×7+18 和(22+18) ×7 是朋友吗?如果要让它们成为朋友,该怎么改?

(2)整理卡片,分成两组

甲组 乙组

① 100×31+2×31 ① (100+2)×31

② 9×(37+63) ② 9×37+9×63

③ (22+18)×7 ③ 22×7+18×7

分组计算比赛: 女生计算甲组的三道题,男生计算乙组的三道题.看谁算的快。

(设计意图:制造冲突,引出认知矛盾)

男同学这组为什么算的慢?你们认为这样比赛公平吗?你们有没有办法很快算出得数?(引导学生思考得出简便计算的方法:把乙组题转化成乘法分配律的另一种形式,使计算简便。)

小结:能口算,并且能凑整十、整百数,算起来比较简便。

利用乘法分配律可以使一些计算简便。

(这一环节进行充分运用,渗透简便运算的意识)

四、运用规律,内化新知

(8+4)× 25= 34×72+34×28=

先观察,说一说算式特点,再尝试计算、 指名板演、全班交流

(设计意图:前后呼应,既显示了内容的完整性,又激发了学生的探索欲望,增强了学习的自信心。)

五、课堂总结与评价:

用自己的话说一说什么是乘法分配律?

(设计意图:培养学生的归纳总结意识和数学语言的表达能力。)

板书设计:

乘法分配律

(4+2)×25 = 4×25+2×25

(a+b)×c= a×c+ b×c

甲组 乙组

① 100×31+2×31 ① (100+2)×31

② 9×(37+63) ② 9×37+9×63

③ (88+12)×7 ③ 88×7+12×7

乘法分配律教案篇3

教学内容:

教材第54到55页例题,完成“做一做”。

教学目标:

1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。

2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功

感,增强学习的兴趣和自信。

教学重、难点:

发现并理解乘法分配律。

教具准备:

多媒体课件一套。

教学过程:

一、创设问题情境

谈话:这学期,我们学校鼓号队又增加了新成员,辅导员柳老师正在为他们准备服装呢!(课件出示商店场景)

二、展开探索过程

1、初步感知。

提问:仔细观察,从图中你获得了哪些信息?

学生列式后交流反馈解题思路,并借助图形加深学生对两种解题思路的体会。

提问:猜一猜,这两种方法的计算结果会怎么样?

计算验证:算一算,来证明你的猜想是正确的.。

板书等式:(30+25)x4=30x4+25x4

2、类比展开。

(1)出示图形,让学生说说你想到了什么?你能用两种方法求出6套衣服一共要付多少元吗?板书:(30+25)x6=30x6+25x6

(2)除了把长方形看成上衣,梯形看成裤子,把它们看成6套衣服,还可以看成什么?

要求6套课桌椅多少元,你准备怎么解决?

板书:(100+60)x6=100x6+60x6

3、体验感悟。

(1)类似这样的等式还有吗?你能写出第4组吗?

学生举例后,挑3组板书。

(2)提问:这3组算式相等吗?怎么证明?(计算、乘法的意义)

同桌互相检查刚才写的算式是否相等。

(3)交流:介绍你写成功的经验

引导:你是怎么根据左边的算式写出右边的算式的?

4、提示规律。

(1)提问:像这样的等式能写完吗?

(2)用自己喜欢的方式表达所发现的规律,在小组里交流。展示。

板书:(a+b)xc=axc+bxc

(3)板书:乘法分配律

让学生用自己的语言说说这个字母式子表示什么,师小结。

三、巩固内化

1、在□里填上合适的数,在○里填上运算符号。

(42+35)x2=42x□+35x□

27x12+43x12=(27+□)x□

15x26+15x14=□○(□○□)

学生独立填写,指名报答案,全班共同校对。指出后两题是乘法分配律的逆向应用。

出示:72x(30+6)=齐说答案。

出示:(25—12)x4=可能等于什么?怎样才能确认?你能联想到什么?小结。

2、横着看,在得数相同的两个算式后面画“√”。

(48+52)x1348x13+52x13□

40x5+2x55x(40+2)□

75x(19+1)75x19+75□

40x50+50x9040x(50+90)□

27x(16+30)27x16+30□

独立完成,小组讨论为什么有的是相同的,有的是不相同的。指名报答案,说说第三组两道算式为什么是相等的?第四组的两道算式为什么不相等?怎样改一下能使它们相等?

出示打“√”的算式,如果让你计算的话,你更愿意计算哪边的式子呢?为什么?小结:有时应用乘法分配律可以使计算简便。

四、总结回顾

通过今天这节课的学习,你有什么收获?

五、布置作业

1、必做题:想想做做第5题。

2、选做题:如果把乘法分配律中“两个数的和”换成“3个数的和”、“4个数的和”或“更多个数的和”,结果还会不会不变?用合适的方试着进行验证。

乘法分配律教案篇4

教材分析

乘法分配律是人教版小学数学四年级下册的教学内容,本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课的难点。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

学情分析

学生在前面学习了加法和乘法的交换律、结合律,以及应用这些运算律进行简便计算,已经初步具备探索和发现运算定律并运用运算律进行简便计算的经验,为学习新知识奠定了基础。同时新知识学生在已经学习的知识中也有所体现,只是没有揭示这个规律罢了,比如学生在计算长方形的周长时,周长=长×2+宽×2,周长=(长+宽)×2。从平时我班学生的表现来看,他们的概括、归纳能力还是一个薄弱的环节 。

教学目标

1、通过探索乘法分配律的'活动,进一步体验探索规律的过程,并能用字母表示。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

3、会用乘法分配律进行一些简便计算

重点难点

1、 指导探索乘法分配律。

2、 发现并归纳乘法分配律。

方法指导

通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。

预设流程

激趣导入

(约3分钟)

一、创设情境,提出问题:

1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。请同学们想一想,怎样搭配?

2、学生思考:(1)有几种搭配方案

(2)选择你喜欢的一种方案,并算出总价。

(学生自己选择方案并在练习本上完成。师强调:是买4套衣服)

自主学习

(约7分钟)

(一)组内研讨,确定方案

1、组内研讨:

(1)一共有几种搭配方案?

(2)介绍自己的方案,并说一说,你推荐的理由。

(3)说说你推荐的方案,需要花多少钱?你是怎么算的?

合作交流

(约10分钟)

2、汇报交流:

师:哪一个同学想先来给老师推荐他的方案?

师:要想求4套这样的衣服需要多少元?可以先求什么,再求什么?

分别列式解答

师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来?(学生回答后,师在两个算式中间用等号连接)

师:这个等式怎么读呢?

生尝试读等式。

(预设学生读法:a.225加上75的和乘4等于乘225乘4加75乘4

b.225加上75的和乘4等于225和75分别与4相乘的积再相加。 )

3、研究其它方案

由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。计算后分别加上等号。

教师板书:

一套 ×4 = 4件上衣 + 4条裤子

(225+75)×4 = 225×4 + 75×4

(225+125) ×4 = 225×4 + 125×4

(175+75)×4 = 175×4 + 75×4

(175+125) ×4 = 175×4 + 125×4

精讲点拨

(约8分钟)

(二)、观察比较、猜测验证

1、观察比较

2、提出猜想。

师:观察上面的等式,左右两边的算式什么变了什么没变?

你们有什么发现?

3、举例验证。

让学生再举出一些这样的例子进行验证,看看是否也有这样的规律?

学生汇报,教师根据汇报板书。

(三)、总结规律,概括模型

1、总结规律:

师:刚才同学们发现了数学中的一个规律,很了不起。大家知道这是什么规律吗?(生猜测)

师:这个规律就是我们今天学习的乘法分配律。(齐读)你能说一说什么叫乘法分配律吗?

2、用字母表示:

师:用字母如何表示乘法分配律?

测评总结(约12分钟)

三、巩固应用,训练提升

1、请你根据乘法分配律填空

(12+40)×3=()×3+()×3

15×(40+8)=15×()+15×()

78×20+22×20=( + )×20

66×28+66×32+66×40=( + + ) ×40

教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。

2、火眼金睛辨对错

56×(19+28)=56×19+56×28

(18+15)×26=18×15+26×15

(11×25) ×4= 11×4+25×4

(45-5)×14 =45 ×14 -5 ×14

强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。

3、用乘法分配律计算下面各题。

(40+4)×25 39×8+39×6-4×39

4、拓展提高

你能用乘法分配律解决这道题吗?

86×101

四、说一说,今天我们研究了什么?你有什么收获

板书设计

乘法分配律

一套 ×4 = 4件上衣 + 4条裤子

(225+75)×4 = 225×4 + 75×4

(225+125) ×4 = 225×4 + 125×4

(175+75)×4 = 175×4 + 75×4

(175+125) ×4 = 175×4 + 125×4

乘法分配律:两个数的和与一个数相乘,可以用这两个数分别和这个数相乘,再相加。

乘法分配律教案篇5

教学目标

知识目标:通过新旧知识的沟通,观察、比较、抽象、概括出乘法分配律;初步理解和掌握它的结构特征;理解并运用乘法分配律进行简算,并能正确计算。

能力目标:渗透从特殊到一般,再由一般到特殊这种认识事物的方法。

培养学生观察、比较、抽象、概括等能力。

培养学生的数感和符号感。

情感目标:让孩子们自己生成“用符号记录整理的方法”,体验学习的快乐。

教学重难点

教学重点:引导学生通过观察、比较、抽象、概括出乘法分配律。

教学难点:应用乘法分配律解决实际问题。

教学工具

课件

教学过程

(一)生活引入,感知规律

1、在家里,你最喜欢谁?我也作了一个调查,咱们班很多同学是爸爸和妈妈很早起来为你准备早点、接送上学,辅导作业。

2、爸爸和妈妈都对我们那么好,我们可以自豪的说“爸爸和妈妈都爱我”。

3、爸爸和妈妈都爱我,这句话还可以怎样说?

4、我听说张磊和杨军都是李新建的好朋友,这句话还可以怎样说?

5、小结:同样一句话可以有不同的说法。生活中的这种现象在我们数学中是怎样的呢,今天我们就一起来探索数学中的规律。

[策略] 把数学知识依附于常见的现实生活问题中,引领学生发展自身灵性,寻求数学知识与现实问题间的本质联系,进而合理处理相关信息,结合鲜活的数学材料,触动学生的道德碰撞,给原本单一冷漠的内容注入人文的血液,促进学生感悟、内化。

(二)开放探究,建构规律

1、情境引入

讲本学期开学,学校要为一、二、三年级更换桌椅情况:

(课件播放),提出问题,引发学生思考:

(1)请仔细观察大屏幕:

学校为一年级更换3套桌椅共需要多少钱?

学校为二年级更换5套桌椅共需要多少钱?

学校为三年级更换6套桌椅共需要多少钱?

(2)请同桌两个同学选一个问题在练习纸上用两种方法解答?

(3)说说你的解题方法?你的算式表示什么意思?另外一种方法呢?解释一下。

(4)谁愿意接着汇报?

2、第一次发现

(1)仔细观察这三组算式,你能发现什么吗?可以与同桌讨论讨论。

小结:每一组算式的结果相等。

(2)我把这两个算式用等号来连接,行吗?为什么?

板书:(50+60)×3 = 50×3+60×3

(75+68)×5 = 75×5+68×5

(80+65)×6 = 80×6+65×6

3、第二次发现

(1)再观察这三组算式,还有什么发现吗?

(2)同学们,你们的发现是不是只是一种巧合,一种猜想呀?能不能举出一些这样的例子对你的猜想进行验证呢?

(3)每人举出一个例子,写在纸上,然后请同桌帮助验证

汇报交流:像这样的例子还能举出一些吗?举的完吗?

4、归纳总结:

(1)你们发现的这个规律叫做乘法分配律。同桌说说什么叫做乘法分配律?

(2)请看大屏幕,你们的意思是这样吗?小声读读。

(3)有什么不懂的词吗?

5、个性化理解

(1)你能用比较喜欢的形式来表达上面的这些等式吗?比如用字母,图形等。

根据学生回答教师板书:

(□+○)×☆=□×☆+○×☆

(甲+乙)×丙=甲×丙+乙×丙

(a+b)×c=a×c+b×c

(2)这些等式都表示什么意思呢?(同桌讨论,然后汇报)

(3)对于乘法分配律用字母表示感觉怎么样?

[策略]针对众多的数学事实,不急于引导学生发现规律,而是让学生运用朴素的语言概括出这些等式的共同特点,这些特点既是“乘法分配律”知识的雏形,更是学生建构知识的渐进台阶。在此基础上引出规律,水到渠成。尤其是,让学生用个性化的方式表示自己对乘法分配律的理解,更是有效的促进了学生对规律意义的个性化感悟。

(三)激活联系、应用规律。

1、请你把相等的两个算式连线。

(8+13)×4 41×(3+27)

3×(21+6) 7×5 +8

41×3 +41×27 3×21 +3×6

7×(5+8) 8×4 +13×4

(1)你为什么连得这么快?是计算了吗?

(2)这两个算式之间为什么不连了?能用乘法分配律的内容来解释吗?

2、根据乘法分配律填空:

(83+17)×3=□×□○□×□

10×25+4×25=(□○□)×□

(1)谁愿意展示一下你填写的。有不同意见吗?

(2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便了?为什么?

(3)小结:学习了乘法分配律可以灵活选择算法,怎样计算简便就怎样算。

[策略]多种练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓宽知识视野、完善认知结构、提升认识境界、增长人生智慧的过程。

3、联系旧知、同已有知识建立联系。

谈话:“乘法分配律”在过去学习中用过吗?咱们回顾一下。

现在我们每天都在练乘法竖式计算,看大屏幕。乘法竖式中也运用了乘法分配律?你们看出来了吗?

[策略]引导学生联想知识用途,勾起了学生对已有知识的回忆,凭借亲自计算得到的感悟领会到乘法分配律的广泛运用。

(四)课堂小结:

今天,学习了乘法分配律,你有什么想法?

(五)板书设计:

乘法分配律

(50+60)×3 = 50×3+60×3

(75+68)×5 = 75×5+68×5

(80+65)×6 = 80×6+65×6

……

(a+b)×c = a×c+b×c

乘法分配律教案模板5篇相关文章:

3的乘法口诀表教案优秀6篇

分数的乘法教学反思模板6篇

参与申请分配申请书模板7篇

不参与分配申请书5篇

申请参与分配申请书5篇

参与分配案申请书5篇

股权分配合同6篇

分数的乘法教学反思7篇

分数乘法一教学反思优秀8篇

分数乘法一教学反思6篇

乘法分配律教案模板5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
161296