数学除法的教案模板8篇

时间:
Iraqis
分享
下载本文

教案设计能够帮助教师迅速应对学生的不同需求与反应,教案的设计应结合现代技术,以增强课堂的互动性,下面是久久美篇网小编为您分享的数学除法的教案模板8篇,感谢您的参阅。

数学除法的教案模板8篇

数学除法的教案篇1

第1课时

教学目标:

使学生明确用7、8、9的乘法口诀求商的算理,初步会用7、8、9的乘法口诀求商,能算出除法算式的得数。

教学重点:

掌握用乘法口诀求商的方法。

教学难点:

掌握用乘法口诀求商的方法。

教学过程:

一、复习

1、复习7、8、9的乘法口诀。

2、根据图意,列出一道乘法算式和两道除法算式。

说一说,你是怎样计算出结果的?

二、新授

(一)教学例1

1、根据图,引导学生布置教室,提出问题。

2、(1)有56面小旗,挂成行,平均每行几面?可以怎样列式?

板书:568=( )

讨论:怎样计算?

板书:七八五十六,商是7。

(2)如果挂成7行呢?平均每行几面?

板书:567=( )应该想哪句口诀呢?

3、根据图上小朋友的活动,你还能提出哪些数学问题呢?你能列式计算吗?四人小组说一说,你是怎样计算的`?

(二)完成做一做

1、出示74 口??

(1)启发学生想一想,写出两道除法算式。

(2)分组讨论,想一想商是几,用哪句口诀,怎样想的?

2、再出示余下的题目,由学生独立计算,再交流。

三、巩固练习

练习十一。第1~4题。

四、总结

板书设计:

用7、8、9的乘法口诀求商

例1、 7 8=56

568=(7) 口诀:(七)八五十六

567=(8) 口诀:七(八)五十六

教学反思:

学生有了前面的学习作为基础,这部分的内容掌握起来比较容易,以培养学生的能力为主,效果不错。

数学除法的教案篇2

教学目标:

能力目标:培养学生动手动脑能力,以及解决实际问题的能力。

知识目标:提高分数除法的计算速度和正确率,并能正确的计算,解决实际问题。

情感目标:培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验成功的欢乐。

教学重点:

解决实际问题。

教学策略:

在小组间交流合作的.基础上,提高计算能力和计算速度。

教学准备:

小黑板

教学过程:

一、导入新课。

同学们,我们数学是从生活中得出的经验和结晶,又服务于生活,那么我们的分数除法能解决什么问题呢,这节课我们就学习分数出发的应用。板书课题:分数除法(三)

二、实施目标。

1、出示题目:

跳绳的小朋友有6人,是操场上参加活动总人数的。操场上有多少人参加活动?

2、指名学生读题,并说出题目中分率的单位“1”的量是谁?知道不知道?

3、先让学生试着做一做。

4、交流作法。(根据学生做题情况导入方程的方法)

5、教师指导学生用方程的方法解题。对用其它方法解答的同学,只要合理进行表扬。

6、渗透用算术法解答此题。

7、教师:只要单位“1”的量不知道,可以用两种方法解答题目,一种是方程;一种是算数法。

三、巩固目标

1、试一试第一题。

指名学生读题,独立解答。针对学生做题情况,进行辅导后进生。

指导学生分清两问的不同,认清乘法和除法的区别。

2、试一试第二题。

独立解答,全班订正。

四、课堂,教师和学生自评。

板书设计:

解:设操场上有x人参加活动。

x×=6

x×÷=6÷

x=6×

x=27

数学除法的教案篇3

分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:

一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。

从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。

二、渗透数学建模思想,强化用方程解答分数除法问题。

从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的.数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。

三、借助线段图分析数量关系,发挥其工具性。

线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。

本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。

本单元的目标是:

1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。

2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。

3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。

4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。

●分数除法,安排4课时。

第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。

第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。

第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。

第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。

分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。

数学除法的教案篇4

教学内容:

教材第60页例1及第61页例2。

教学目标:

1.通过分草莓的操作活动,使学生理解余数及有余数除法的含义,并会用除法算式表示出来,培养学生观察、分析、比较的能力。

2、借助用小棒摆正方形的操作,使学生巩固有余数除法的含义,并通过观察、比较探索余数和除数的关系,理解余数比除数小的道理。

3.渗透借助直观研究问题的意识和方法,使学生感受数学和生活的密切联系。

教学重点:

理解有余数除法的含义,探索并发现余数和除数的关系。

教学难点:

理解余数要比除数小的道理。

教学准备:

任务卡片、课件、小棒

教学过程:

一、复习旧知,情境导入

1、口算并说出口诀。

18÷2= 30÷6= 49÷7=

2、说出算式里各数的名称,算式的读法和算式的意义

15÷5=3

3、情境导入

(1)同学们,你们真聪明!还有一些小同学,他们也很聪明,你们看,他们学得多认真啊!请你仔细观察这张照片,说一说这些同学在做什么呢?(摆图形)

(2)用11根小棒摆出下面的图形,各能摆几个?我们也来摆一摆吧!

(3)学生利用11根小棒拼摆图形后汇报结果。

用11根小棒,每( )根摆成一个( )形,摆了()个,还剩( )根。

(4)质疑:根据我们刚才摆的图形,你有什么发现吗?

生:摆完图形后小棒都有剩余。摆的图形不同,剩余小棒的根数不相同。

4、揭示课题

你们真是一群爱思考的孩子,是啊,在刚才的操作过程中产生了剩余,恰如我们平常分东西,有时候正好平均分完,有时候不能正好分完,剩下的又不够再分,剩下不够再分的数,在数学中,我们叫它余数,这就是我们今天所要学习的内容——有余数的除法。

二、动手操作,探求新知

(一)动手操作 探究意义。教学例1

1、.复习表内除法的意义

出示图片:有6个草莓,每2个摆一盘,怎么摆?

(1)看一看,你知道了什么?收集数学信息。

(2)请同学们拿出6根小棒代表6个草莓,摆一摆,然后用除法算式表示出来。

学生动手操作,教师巡视指导。

学生集体交流平均分的过程、结果及算式。

生:6个草莓,每2个一盘,可以摆3盘,列式为

6÷2=3(盘)(板书)

(3)指名说一说这个算式的意义。

生:6个草莓,每2个一盘,摆了3盘。

2、理解有余数除法的意义

出示:有7个草莓,每2个一盘,能摆几盘,有没有剩余?

(1)和上一题观察对比,你发现了什么?

(2)现在,你还会摆吗?互相说一说你是怎么摆的?

动手摆一摆。

(3)学生动手操作并汇报操作结果。

生:7个草莓,每2个一盘,可以摆3盘,还剩1个。

(4)教师引导学生思考。

师:平均分后有剩余的1个怎么办?剩下的不能再平均分,可能用除法算式表示吗?如果可以怎样表示呢?请同学们在小组内讨论一下。并汇报

(5)师:7里面最多有3个2 ,余下的1不够再分,余下的这个数,在数学上叫余数,用除法算式表示为7÷2=3(盘)……1(个)(板书)怎样读呢?

(6)为了分清余数和商,我们在商和余数中间用6个小圆点隔开,表示有剩余,我们把这样的除法叫做有余数的除法。

(7)引导思考 师:这个算式中,7、2、3、1各叫什么名称?分别表示什么呢?

(8)组内讨论并汇报

生:7是被除数,表示草莓的总数;2是除数,表示每份数;3是商,表示可以分的份数;1是余数,表示还剩1个,不够再分。

3、比一比,进一步理解有余数除法的意义。

师:同学们仔细观察这两个算式,它们有什么相同点和不同点呢?

(1)引导学生观察6÷2=3和7÷2=3……1,这两个算式,比较它们的异同点。

(2)学生组内讨论,集体交流。

生:相同点:都是把物体平均分,都用除法计算。

不同点:一个算式没余数,另一个算式有余数。

4、确定有余数的除法中商和余数的单位名称。

(1)师:在有余数的除法算式中,余数也是要写单位名称的,那你知道这个算式中余数的单位名称是什么吗?生是(个)

师:对,余数的单位名称和被除数的单位名称是相同的,那你知道为什么它们是相同的吗?因为被除数是被分物体的总数,而余数是这些物体剩余的部分,所以它们的单位名称是相同的。

(2)商的单位名称为什么是“盘”呢?

商是我们求出的结果,要求的是能摆几盘,所以单位名称是“盘”。

(3)小结:总之,有余数除法要根据除法的意义来确定单位名称。商的单位名称要根据“求什么”来确定,而余数的单位名称要与被除数相同。

(4)师:刚才我们摆了小棒,你能用除法算式表示所摆图形的结果吗?注意单位名称的使用。

(二)观察比较,发现关系。学习例2

师:同学们真是爱动脑的好孩子,不过教师还想考考你们的观察能力,让我们来用小棒摆正方形。

1、深入理解有余数除法的意义

(1)请同学们分别用8、9、10、11、12根小棒摆几个下方形,并根据摆的情况列出算式。

(2)小组合作:摆图形,记录结果,列出算式。

(3)学生汇报,教师板书。8÷4=2 ……

(4)如果继续摆下去,会出现什么样的结果呢?13根……16根……屏幕出示

2、引导学生明确有余数除法中余数都比除数小

(1)师:观察上面所有算式的除数和余数,你有什么发现?

(2)说一说自己的发现。

生:除数都是4,余数有规律,是1、2、3的顺序出现的。

这几个余数都比4小。

再看看前面,我们用小棒摆图形的算式,你又有什么发现?

生:除数不一样,但是余数也都比除数小。

(4)有没有余数比除数大的现象呢?为什么?

不会,剩的多,还可以再摆或再分。

(5)师生共同总结:在有余数的除法里,余数一定比除数小。

(6)用一堆小棒摆 ,如果有余数,可能会剩几根小棒?最多剩几根?最少呢?如果用这些小棒摆三角形呢?

三、动手动脑,巩固新知

1、(1)10支铅笔,每人分2支,可以分给( )人,列式:

(2)10支铅笔,每人分3支,可以分给( )人,还剩( )支。

说一说这个算式中,每一部分的名称

10 ÷ 3 = 3…… 1

( ) ( ) ( ) ( )这个算式读作:( )

2、60页“做一做”1题

独立完成,集体订正

3、摆一摆、算一算

分别用6、7、8根小棒摆三角形,能摆几个三角形?如果有剩余,余下几根小棒?

6÷3= (个)

7÷3= (个)…… (根)

8÷3= ( )…… (根)

在有余数的除法算式中,余数一定比除数( )

4、判断,并说说理由。

17÷3=4……5( )

13÷2=6……1( )

18÷3=5……3( )

5、猜一猜,余数可能是几

÷6= ……( )

÷8= ……( )

÷9= ……( )

当一个数除以6,如果有余数,余数最大是( )

÷( )= ……6如果除数是6,除数最小是( )

6、思考:

小花猫和它的13个小伙伴要到河对岸参加森林运动会。白鹅大哥说:“我的船小中,每次只能坐4个乘客”

同学们,你们知道小花猫和它的小伙伴要几次才能全部渡过河吗?

四、全课总结

同学们,这节课你有哪些收获?

附:板书

有余数的除法

6÷2=3(盘) 8÷4=2

7÷2=3(盘)……1(个) 9÷4=2……1

余数 10÷4=2……2

读作: 11÷4=2……3

7除以2等于3余1 12÷4=3

数学除法的教案篇5

教学内容:

49~50页的内容及练习十二1~12题。

教学目标:

1.知识与能力:并会用分数表示两个数相除的商,明确可以用分数表示两个数相除的商。

2.过程与方法:通过观察、探究,理解分数与除法的关系,经历分数与除法的关系的探究过程

3.情感、态度与价值观:通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重点:

掌握分数与除法的关系,会用分数表示两个数相除的商。

教学难点:

理解可以用分数表示两个数相除的商。

教具准备:

课件

教学过程:

一、复习导入

1. 表示什么意思?它的.分数单位是什么?它有几个这样的分数单位?

2.把一根铁丝平均截成3段,每段的长度是这根铁丝的几分之几,把谁看作单位1?

3.引入:5除以9,商是多少?板书:59

如果商不用小数表示,还有其他方法吗?学习了分数与除法的关系后,就能解决这个问题了。板书课题:分数与除法。

二、新课讲授

1.教学例1:出示题目

(1)列出算式。(板书:13=)

(2)讨论:1除以3结果是多少?你是怎样想的?

(3)教师画出示意图。把一个蛋糕平均分成3份,其中一份应是这个蛋糕的 ,就是 个1。

板书:13= 1/3(个)

2.教学例2:出示题目

(1)动手操作。拿出三张同样大小的圆形纸片,把它看作3块饼,用剪刀把它们分成同样大小的4份。

(2)口述方法及每份分得的结果,教师总结几种不同的分法。

(3)归纳:从上面的操作可以看出,把3块饼平均分成4份,无论怎样分,每一份都是3块饼的 ,即3个 块,把3个 块饼合起来就是1个饼的 ,即 块,因此,34=3/4 (块)。

由此可见, 不仅可以理解为把1块饼(单位1)平均分成4份,表示这样的3份的数,也可以看作把3块饼组成的整体(单位1)平均分成4份,表示这样1份的数。

学生相互说说 表示的意义。

3.教学分数与除法的关系。

数学除法的教案篇6

教学目标

1.知识与技能:使学生在具体的情境中,理解和掌握整十、整百数和整千数除以一位数的口算方法,能正确地进行计算。

2.过程与方法:通过观察、操作、讨论的活动,使学生经历探索口算除法的全过程。渗透转化和迁移类推的数学思想,加深对口算除法的理解,发展数感。

3.情感与价值观:让学生感受数学与日常生活的联系,在探索的过程中获得成功的体验。

教学重难点

教学重点:掌握商是整十、整百和整千的口算除法方法,能正确进行计算。

教学难点:理解商是整十、整百和整千的口算除法算理。

教学工具

多媒体课件彩色手工纸10盒

教学过程

1.复习引入

1.1.认识盒装手工纸数目

师:拿一盒手工纸,让学生猜一猜里面有多少张?

学生猜后教师打开演示:介绍每沓10张,每盒100张。

1.2.师演示、生口答

(1)1盒里面有( )沓手工纸,10沓有( )个十张;

(2)2沓纸有( )张,有( )个十张;

(3)80张纸有( )沓;

(4)2盒纸有( )张,( )个百张;

(5)400张能装( )盒,有( )个百张。

?设计意图】通过边演示边说想法,明确一沓就是一个十,几沓就是几十,为后面的学习做好铺垫。

2.探究新知

教学例1

2.1.探索60÷3的口算方法。(课件出示例1)

把60张彩色手工纸平均分给3人,每人得到多少张?

(1)认真审题,独立学习。

说一说:你知道哪些信息?需要解决什么问题?你会列算式吗?(板书:60÷3)

师:为什么用除法计算?(总数÷份数=每份数)

想一想:应该怎样口算?

学生思考后,以小组为单位拿出一盒手工纸或小棒操作一下,把你的想法在小组中与同学说一说。

(2)汇报交流、耐心倾听。

师:谁来说一说你是怎样算的?

预设1: 60张纸就是6沓,先每人分一沓,共分掉3沓,剩下3沓再每人分一沓,刚好分完。这样每人得到2沓,2沓就是20张。

预设2: 60张纸就是6沓,6沓平均分给3人,每人得到2沓,2沓就是20张。(课件演示)

预设3: 60里有6个十,6个十除以3是2个十,就是20。 (板书横式:6÷3=2 60÷3=20)

预设4:30×2=60或2×30=60可以得出60÷3=20。(想乘法算除法)

预设5:60-20-20-20=0共减3次,所以60÷3=20。

预设6:20+20+20=60所以60÷3=20。

?设计意图】教材在这里的编写意图,是以直观为支撑,形数结合。教师要尽量地多给出学生独立思考的时间,让不同层次的学生在充分的时间内亲历解决问题的过程。体会算法的多样化,在自主探索中运用新知转化成旧知即表内除法的思想方法,化难为易,理解算理。

(3)算法优化,理清算理。

你认为以上算法哪一种比较好?为什么?

请与预设3相同学生再说一说,理解后,其他学生与同桌再互相说一说。

?设计意图】学生口算除法往往喜欢这样说:先不看“0”,算完后商末尾添上“0”。这是一种描述的语音,是一种机械记忆的方法,这样的描述有时容易产生误解。如有学生说出,教师千万不可回避,应耐心帮助学生理清其中的道理:先不看“0”,算完后商末尾添上“0”(算法)。其实这种规律的总结是预设3(算理)的翻版。口算教学应让学生充分理解算理,使学生尽可能用较为简洁的语言表述计算过程。如60÷3表示把60看作6个十,6个十除以3是2个十,就是20;教学时,可以让学生说说自己是怎样算的,引导学生将整十数除以一位数转化为表内除法。只有这样充分地考虑到学生的后续学习,沟通前后知识的联系,总结出来的方法才能真正地为以后的学习服务。

(4)揭示课题、巩固方法。

师:刚才我们计算了60÷3=20(张),它就是口算除法。(板书课题)

抢答题(卡片出示正反两面)

5÷5= 4÷2 9÷3 8÷4

50÷5= 40÷2 _____ _____

根据前两组的规律,让学生猜一猜后面每一组算式,口算后说出算理。

同学们真厉害,下面有信心再解决一些问题吗?

600÷3= (课件出示)

2.探索一位数除整百和整千数的商

(1)你是怎样计算的?和同桌交流一下。(汇报后集体订正)

预设1:6盒除以3,每人得2盒,2盒就是200。

预设2:6个百除以3是2个百,就是200。(让多名学生再说一说,如不理解可用教具演示。)

(2)那么6000÷3呢?

?设计意图】在60÷3和600÷3的基础上,学生利用知识的迁移,直接类推出口算方法和结果。

2.3.引导小结:口算整十数、整百数和整千数除以一位数时,我们可以把整十数看成几个十,把整百数看成几个百,把整千数看成几个千,转化成表内除法再进行口算较为简便。

1.探索120÷3的口算方法。(课件出示例2)

3个班上手工课一共用去120张彩色手工纸,平均每班用了多少张?

认真审题,独立学习。

说一说:你知道哪些信息?需要解决什么问题?你会列算式吗?(板书:120÷3)

师:为什么用除法计算?(总数÷份数=每份数)

想一想:应该怎样口算?

先思考,再小组合作交流,可利用盒中的手工纸或小棒边操作边说。

汇报交流、耐心倾听。

师:谁来说一说你是怎样算的?

预设1:可以把120张看成12沓,12沓除以3是4沓,就是40。分步算式:

12÷3=4 120÷3=40(生汇报师课件演示)

预设2:可以把120看成12个十,12个十除以3是4个十,就是40。分步算式:

12÷3=4 120÷3=40

(3)算法优化,理清算理。

你认为以上两种算法哪一种比较好?为什么?

请与预设2相同的学生再说一说,理解后其他学生再与同桌互相说一说。

(4) 1200÷3呢?(板书)

?设计意图】学生已有第一节课口算除法的基础,通过复习用简洁的语言表述一位数除法的计算过程,学生会很自然地迁移类推出一位数出几百几十的口算方法,配上直观操作演示,更加深了学生对算理的理解。在交流和复述中培养了学生数学表达能力。

小结:在计算一位数除几百几十时,可以将几百几十看作几个十的数除以一位数,把它转化为表内除法。

1.探索66÷3的口算方法。(课件出示例3)

把66张彩色手工纸平均分给3人,每人得到多少张?

(1)摆出准备好的66张纸或小棒,让学生分一分,说一说是怎样分的?

(2)多名学生说后,教师课件演示,并填空。

先分( ),每份分得( )沓,再分( ),把单张的分成了( )份,每份分得( )张,分完后每份共有( )张。

(3)说明计算方法:66张手工纸有6沓(每沓十张)和6张,也就是66可以分成6个十和6个。先分整沓的,就是把6个十平均分成3份,每份是2个十,再分单张的.,就是把6个一平均分成3份,每份是2个一,最后再把每份中整沓和单张合起来20+2=22,就是所求的结果。

分步算式:60÷3=20 6÷3=2 20+2=22 (板书)

(4)引导小结

都是“先分后合”把几十几分成两部分:整十数和一位数。分别除以几再相加。将新问题转化为已经学过的知识来解决。

?设计意图】这是两位数除以一位数,每一位都能除尽的例题。学生通过边分手工纸或小棒操作,边说出口算步骤,让学生充分理解算理。它采用的是“先分后合——化难为易”,将新问题分两部分转化成表内除法来解决问题。为了降低难度,教师以板书分步算式来解释口算方法,这样能更好地提高学生的口算能力,为笔算除法打下基础。

3.课堂练习

3.1.算一算,说一说。

8÷4=( ) 15÷5=( )

80÷4=( ) 150÷5=( )

800÷4=( ) 1500÷5=( )

9÷3=( ) 24÷6=( )

90÷3=( ) 240÷6=( )

900÷3=( ) 2400÷6=( )

你是怎么算的?对比这两组题有什么相同点与不同点。

附答案:

8÷4=( 2 ) 15÷5=( 3 )

80÷4=( 20 ) 150÷5=( 30 )

800÷4=( 200) 1500÷5=( 300 )

9÷3=( 3 ) 24÷6=( 4 )

90÷3=( 30 ) 240÷6=( 40 )

900÷3=(300) 2400÷6=( 400)

左边这组题商的位数与被除数相同。右边这组题商的位数比被除数少一位。

3.2.解决问题。

一共90人,先排成人数相同的9列,再围成人数相同的3个圆圈。

(1)每列多少人?(2)每个圆圈多少人?

附答案:

(1)90÷9=10(人)答:每列10人。

(2)90÷3=30(人)答:第个圆圈30人

又出示了一组“智慧岛”习题。

附答案:

20元=200角200÷5=40(枝)答:可以买40枝铅笔。

20÷2=10(本)答:可以买10本。

4.巩固提升

4.1.填一填。

2.填出里

的数。

3.解决问题。

一只东北虎的体重是一只鸵鸟的4倍,是一只企鹅的9倍。

请你自己算一算企鹅和鸵鸟的体重。

附答案:

360÷9=40(千克)答:企鹅的体重是40千克。

360÷4=90(千克)答:企鹅的体重是90千克。

?设计意图】练习时要求学生灵活运用已有知识和经验来解决问题,促进学生探索规律,发现简便的口算方法,正确口算出结果,注重培养学生养成验算和反思的习惯。

课后小结

a提问:

这节课你学到了什么?

b师生总结

今天我们学习了一位数除两位数、除整百整十数的口算,这些口算内容,在日常生活中经常用到,同时又可以为后面学习除数是两位数的笔算除法打下基础.加强这局部口算练习,有利于提高计算能力。

板书

口算除法

把两位数分成整十数和一位数,分别除以一位数后再相加。

60÷3=20

600÷3=200

120÷3=40

66÷3=22

数学除法的教案篇7

教学内容:

p13-15例1

教学目标:

1、学会除数是一位数除法的基本口算方法,并能正确进行口算。

2、进一步发展学生收集数学信息、提出数学问题的能力。

3、在合作交流算法的过程中发展学生的合作意识和能力。

教学过程:

一、复习旧知

1、组织口算练习

下面的`题目你能很快算出结果吗?试一试

出示口算题目

你能说说你是怎样算的吗?

2、组织学生进行填写

60里面有()个十

240里面有()个十

二、探究算法,理解算理

1、创设情境,引入新课

观察图,从图中你知道了什么?能提出什么数学问题?并列式子解决。

60÷3=600÷3=240÷3=

师:这些问题都是用除法来解决的,今天这节课我们就要来一起学习除数是一位数的口算除法(揭题)

2、小组合作,探究算法

(1)60÷3的结果是多少呢?可以用学具进行研究

(2)全班交流,汇报

60÷3=20把6捆小棒平均分成3份,每份是2捆,也就是20

20×3=60

6个十÷3=2个十所以60÷3=20

3、

三、巩固练习

1、引导学生完成教材p15“做一做”1、2题÷

2、组织学生“开火车”计算p17第1、

数学除法的教案篇8

教学目标:

1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,正确、迅速地进行分数除法的计算。

2、培养学生的语言表达能力和抽象概括能力。

3、培养学生良好的计算习惯。

教学重点:

总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。

教学难点:

利用法则正确、迅速地进行计算,并能解决一些实际问题。

教具准备:多媒体课件、实物投影。

教学过程:

一、旧知铺垫(课件出示)

1、计算下面,直接写出得数

×4 ×3 ×2 ×6

÷4 ÷3 ÷2 ÷6

2、列式,说清数量关系

小明2小时走了6 km,平均每小时走多少千米?

(速度=路程÷时间)

二、新知探究

(一)、例3,

1、实物投影呈现例题情景图。

理解题意,列出算式:2÷ ÷

2、探索整数除以分数的计算方法

(1)2÷如何计算?引导学生结合线段图进行理解。

(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将线段平均分成3份,其中2份表示的就是小时走的路程)

(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?

(4)根据学生的回答把线段图补充完整,并板书出过程。

先求小时走了多少千米,也就是求2个,算式:2×

再求3个小时走了多少千米,算式:2× ×3

(5)综合整个计算过程:2÷ =2× ×3=2×

(二)、小结出计算法则:从上面这个推算过程,我们发现——整数除以分数,等于用整数乘这个分数的倒数。

(三)、计算÷,探索分数除以分数的计算方法

1、学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。

÷ = × =2(km)

2、学生用自己的方法来验证结果是否正确。

3、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。

三、当堂测评

1、p31“做一做”的第1、2题。

2、练习八第2、4题。

学生独立完成,教师巡回指点,帮助学困生度过难关。

小组内讲评,发挥组长的作用,以求“兵强兵、兵练兵”。

四、课堂总结

1、这节课你们有什么收获呢?

2、在这节课上你觉得自己表现得怎样?

设计意图:

这两节课的教学我从以下着手:

1、重视分数除法的意义过程性。我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,使得对除法的意义有更深的理解。

2、在分数除以整数的教学上,我把学习的主动权交给学生。让他们动手操作、集思广益,根据操作计算方法。让学生从小养成自主学习、勇于探究的好习惯。

教学后记

数学除法的教案模板8篇相关文章:

分数除法三教学反思8篇

数学图形教案中班教案模板7篇

小班数学认识3教案模板7篇

小学数学教案万能模板7篇

小学数学教案万能模板6篇

小学数学数与形教案模板6篇

小班数学教案模板5篇

认识16数学教案模板6篇

数学里和外教案模板7篇

小学一年级上册数学教案模板6篇

数学除法的教案模板8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
158323